Bundesamt für Eich- und Vermessungswesen

THE JOINT RESEARCH PROJECT METROLOGY FOR RADON MONITORING

F.J. Maringer, H. Wiedner, on behalf of the MetroRADON consortium

MetroRADON Workshops 12 / 13 October 2020

The MetroRADON Project

- Metrology research project: Radon monitoring
- Started 01 June 2017
- Duration: 3 years + 6 month (COVID-19)
- 17 European partner institutions
- 9 collaborators (unfunded)
- About 70 collaborating experts
- EMPIR project
- Organised by EURAMET
- Co-funded by the European Union's Horizon 2020 programme and the EMPIR Participating States

EURAMET, as the Regional Metrology Organisation (RMO) of Europe, has 37 member countries. It leads cooperation of National Metrology Institutes (NMI) with nearly 6000 metrologists in the development of the European metrology infrastructure and services. It represents Europe in the international metrology forum of the CGPM (General Conference of Weights and Measures).

www.euramet.org

European Metrology Programme for Innovation and Research

part of Horizon 2020, the EU Framework Programme for Research and Innovation

EMPIR calls (2014 - 2020): total budget of 600 M € (300 M € from the participating states and up to 300 M € from the European Commission using Article 185 of the European Treaty)

EMPIR Joint Research Projects (JRPs) the EU's Grand Challenges in **Health, Energy, Environment and Industry**, and to progress fundamental measurement science

EMPIR Work Programme Call Scope – Metrology for Environment (2016)

Document: P-PRG-GUI-033 Version: 1.0 Approved: EMPIR Committee 2015-12-01

This Call again focuses on <u>metrological research</u> to improve the quality of data to stimulate technological innovation, and to disseminate traceability to, and <u>make traceable measurements</u> in, the field. It also aims to underpin other environmental research initiatives through collaborative metrological research and development. It addresses both local environmental challenges such as those related to:

- contamination of water, air and soil
- · radiation measurement and protection, and acoustic noise
- local pollutions and emissions measurements
- monitoring of key parameters to detect local climate evolution

and global metrological challenges for climate monitoring such as those related to:

- the essential climate variables of the atmosphere, land and water, including their constituents, contamination, transport and other parameters, and their time evolution and comparability
- emission control; measurement of gases and particles that have an effect on climate and health
- validated remote sensing data and products for environmental and climate monitoring, taking into account ground based instrumentation networks
- measurements in extreme environments and challenging conditions

Needs for the project

- European Council Directive 2013/59/EURATOM (EU-BSS)
- The EU member states
 - are required to ensure that levels of relevant activity concentration laid down in the EU-BSS do not exceed 300 Bg/m³
 - obliged to transpose the EU-BSS into national legislation by 2018
 - have to consider several items when preparing their national radon action plan
 - define approaches, data and criteria to be used for establishment of radon priority areas
- Reliable calibration and measurement methods of activity concentrations between about 100 Bg/m³ and 300 Bg/m³
- Significant improvement of the metrological infrastructure for calibrations in Europe
- Harmonisation of radon concentration measurements
- Different methods to define the geogenic radon potential of an area need to be compared and standardised

Scope

EURATOM-BSS:

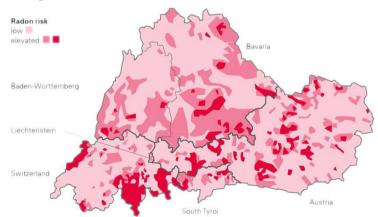
- requires developing Rn action plans whose aim is reduction of Rn exposure
- includes, among other, reference values and delineation of Rn priority areas

• This implies QA, in, among other:

- measuring Rn (+Tn) concentrations incl. calibration in order to be able to verify compliance with reference levels;
- methodology of determination of quantities which serve as geogenic radon potential or its proxies;
- methodology of determination of radon priority areas.

Put together:

QA of "consumer end products" (compliance with rules, assignment of areas to degree of Rn priority, etc.) implies QA of the "supply chain" which leads to them (calibration, measurement etc.)



Main goals

- Creation of a coordinated metrological infrastructure for radon monitoring and radon mapping in Europe suitable for the requirements of the radon action plan requested by the new European Directive
- Enable SI traceable monitoring of radon at low radon activity concentrations (≤ 300 Bq/m³), including calibration and radon mapping, essentially facilitating the harmonised implementation of the new EU-

BSS in Europe

- Investigation of the influence of thoron on radon measurements and calibrations
- Harmonisation of indoor radon and soil exhalation radon measurements
- Development of new methodologies for identification and characterization of radon priority areas in Europe

Relative radon risk map of Austria, Liechtenstein, Switzerland and parts of Germany and Italy. Source: Swiss Confederation

Work beyond the state of the art

- A traceability validation of existing European radon calibration facilities will be performed. At present, secondary standards are calibrated at relatively high activity and are not adequately traceable to one primary radon gas standard
- The JRP will carry out traceable inter-comparisons on the quantities surface soil radon exhalation rate and radon concentrations in soil gas
- Development of a unified index of geogenic Rn hazard: consistent picture of susceptibility to geogenic Rn across Europe
- As a novelty, methods for retrospective radon measurement by compact discs (CDs) and DVDs will be evaluated for their potential to define radon priority areas.
- New techniques for measurement of radon exhalation from soil based on liquid scintillation counting of polymers and track-etching of CDs for indoor air retrospective radon measurement will be developed and evaluated
- Evaluation of the sensitivity of radon monitors and detectors to thoron with traceability to a primary thoron standard

Impact

- Improvement of radiation protection and public health due to reliable radon measurements as a basis for effective radon risk mitigation and prevention against radon progeny induced lung cancer in Europe and, therefore, decreasing the lung cancer risk due to radon in Europe
- The JRP will help to establish a basic European metrological infrastructure so that sound monitoring of radon becomes possible
- Provision of harmonised metrological standards for radon monitoring and radon protection in Europe, thus allowing comparison and merging of data sets
- Provision of reliable radon mapping methods for the delineation of potential radon priority areas in Europe
- Enhance competitiveness of European building industry
- Coordination of European calibration facilities regarding knowledge exchange
- Development of the lead of European metrological facilities in low-level radon monitoring and air-borne radon activity concentrations measurements
- Development of advanced radon instrumentation, resulting in a world-wide technological lead of European manufacturers

Internal funded partners

National Metrology Institutes and Designated Institutes, from countries that have made a financial commitment to the Programme

no.	Participant Type	Short Name	Organisation legal full name	Country
1	Internal Funded Partner	BEV-PTP	Physikalisch-Technischer Pruefdienst des Bundesamt fuer Eich- und Vermessungswesen	Austria
2	Internal Funded Partner	BFKH	Budapest Főváros Kormányhivatala	Hungary
3	Internal Funded Partner	CEA	Commissariat à l'énergie atomique et aux énergies alternatives	France
4	Internal Funded Partner	CMI	Cesky Metrologicky Institut	Czech Republic
5	Internal Funded Partner	IFIN-HH	Institutul National de Cercetare-Dezvoltare pentru Fizica si Inginerie Nucleara "Horia Hulubei"	Romania
6	Internal Funded Partner	РТВ	Physikalisch-Technische Bundesanstalt	Germany
7	Internal Funded Partner	STUK	Sateilyturvakeskus	Finland
8	Internal Funded Partner	VINS	Institut Za Nukleame Nauke Vinca	Serbia

External funded and unfunded partners

External funded partners: All other legal entities established in:

- The Member States of the European Union, including their overseas departments
- The Overseas Countries and Territories (OCT) linked to Member States
- The countries automatically eligible for Horizon 2020 funding
- The countries associated to Horizon 2020

9	External Funded Partner	AGES	Oesterreichische Agentur fuer Gesundheit und Ernaehrungssicherheit GmbH	Austria
10	External Funded Partner	BfS	Bundesamt fuer Strahlenschutz	Germany
11	External Funded Partner	CLOR	Centralne Laboratorium Ochrony Radiologicznej	Poland
12	External Funded Partner	IRSN	Institut de Radioprotection et de Surete Nucleaire	France
13	External Funded Partner	JRC	JRC - Joint Research Centre - European Commission	European Commission
14	External Funded Partner	SUBG	Sofiiski Universitet Sveti Kliment Ohridski	Bulgaria
15	External Funded Partner	SUJCHBO	Státní ústav jaderné, chemické a biologické ochrany, v.v.i.	Czech Republic
16	External Funded Partner	UC	Universidad De Cantabria	Spain
17	Unfunded Partner	METAS	Eidgenössisches Institut für Metrologie METAS	Switzerland

The MetroRADON Consortium

MetroRADON – main objectives

- Novel procedures for the **traceable calibration** of radon (222 Rn) measurement instruments from 100 Bq/m³ to 300 Bq/m³ with **relative uncertainties** \leq **5** % (k = 1)
- New radioactive **reference sources** with stable and known radon emanation rates
- Influence of thoron (220Rn) and its progeny on radon end-user measurements and radon calibrations
- Comparison of existing radon measurement procedures in different European countries
- Optimisation the consistency of indoor radon measurements and soil radon exhalation rate measurements across Europe
- Analysis and development of methodologies for the identification of radon priority areas
- Development of the concept of a Radon Hazard Index (RHI)
- Relationship between soil radon exhalation rates and indoor radon concentrations
- Validation of the traceability of European radon calibration facilities
- To publish guidelines and recommendations on metrologically sound calibration and
- Measurement procedures for the determination of radon concentration in air

MetroRADON Work Package Structure

WP 1

Development of novel procedures for the traceable calibration of radon measurement instruments at low activity concentrations

WP 2

Influence of thoron (220Rn) and its progeny on radon enduser measurements and radon calibrations

WP 3

Comparison and harmonization of radon measurement procedures in Europe

WP 4

Identification of radon priority areas and relationship between soil radon exhalation and indoor radon concentrations

WP 5

Validation
of
traceability
of European
radon
calibration
facilities

You are invited to use the project outcomes

www.metroradon.eu

Register for the project newsletter on our website

ResearchGate:

MetroRADON - Metrology for Radon Monitoring (EMPIR 16ENV10)

Goal: 1. Development of novel procedures for the traceable calibration of radon (222Rn) measurement instruments at low activity concentrations (100 Bq/m3 to 300 Bq/m3) with relative uncertainties ≤ 5 % (k=1)

