The geogenic radon hazard index – another attempt

Bossew P.¹, Cinelli G.², Tollefsen T.², DeCort M.²

1 German Federal Office for Radiation Protection (BfS), Berlin
2 European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, Ispra, Italy
Content

- GRHI: rationale & objective
- Concept → definition
- Properties of the GRHI
- Previous attempts
- Case study
- Challenges
The idea of the Geogenic Radon Hazard Index GRHI

A quantity which measures the availability of geogenic Rn at surface level.

Ideally: Geogenic Radon Potential GRP (e.g. Neznal definition); but: available only regionally - CZ, DE, BE, (IT), (ES), (AT), ?

Other geogenic quantities may be available:
• U concentration,
• ambient dose rate ADR,
• geological units / lithology,
• fault density,
• groundwater recharge coefficient,
• soil properties,
• permeability of the ground, karstification,
• standardized indoor Rn concentration.

GRHI = measure of “Rn proneness” of an area due to geogenic factors.
Role of MetroRadon

• Development of the GRHI is one of the objectives of MetroRn! (WP 4.3.4)
• Harmonization of geogenic Rn quantification across Europe (∼ WP 3.2)
• Possibly harmonized Rn priority areas (delicate subject!) (WP 4.4)
Reminder: Rn - From rock to risk

Radon – a complex system

Often factors are
- by themselves heterogeneous
- interact in complicated way, sometimes not well known

Result: complicated dependence of Rn quantities.

Further, often factors are
- fuzzy or ill defined;
- not well known;

Result: difficult to understand the source of variability
The geogenic radon potential

Wanted:
Multivariate definition of Geogenic Radon Risk Index

- **Geogenic Rn map = independent of anthropogenic factors**
- **Geogenic Rn**
 - Defined everywhere on solid earth
 - Indoor Rn
 - Subject to human activity, temporally variable
 - Outdoor Rn
 - Living habits
 - Meteor
 - House construction
 - Building materials

- “What earth delivers”, without influence of human interference, temporally constant over geologic timescale
The GRP quantifies availability of Rn for infiltration.
Anthropogenic factors determine, to which extent available geogenic Rn leads to indoor Rn concentration... “infiltration and accumulation potential”

observable quantities that can be used for constructing the RHI

Geogenic quantities

- E.g. EURDEP database
- Geochemical data, e.g. GEAMAS, FOREGS, in situ-gamma, aero-gamma

GRP

- Transport: permeability
- Source: U

Indoor Rn

- Usage patterns building characteristics

Anthropogenic compartment

- Exhalation: outdoor Rn, Rn prog.
- Exhalation rate

Geogenic compartment

- Terrestrial gamma DR
- Soil Rn surveys

- Rn-prog
- Rn

- U
- Ra

- GRP
Initial idea (Cinelli et al. 2015)

European Geogenic Radon Map: Multivariate classification approach

Grid 10 km x 10 km

Input Variable (i)

Classification

Weight

Geogenic Radon Risk Index

n – number of samples per grid cell

Low

High

SOIL GAS Rn (1)

INDOOR Rn (2)

GEOLOGY (3)

U_{soil} (4)

U_{rock} (5)

SOTI Properties (5)

TGDR (7)

s_1

s_2

s_3

s_4, s_5

s_6

s_7

\omega_1(n)

\omega_2(n)

\omega_3

\omega_4(n), \omega_5(n)

\omega_6(n)

\omega_7(n)
Properties of the GRHI

• **Consistency**: see next slide
• should include as much *information* as possible
• should be *flexible*, i.e. to be applied to as many different situations as possible
• should be *simple* to calculate!
Its value at a location must be independent on which quantities it has been estimated from. I.e., GRHI calculated from U concentration in soil should have approximately the same value as if calculated from dose rate or GRP, etc.

This follows from the requirement to be consistent across borders, or regions in which different input quantities are available.
Given input quantities \((U, DR, \text{geol. class})\). Then should be:

\[
\text{GRHI}(U,..,.) \cong \text{GRHI}(.,DR,..) \cong \text{GRHI}(U,.,\text{Geo}) \cong \text{GRHI}(U,DR,\text{Geo}) \cong \text{etc.}
\]

\(\cong\) means “up to deviations which are due to the imperfect correlation between geogenic quantities & statistical uncertainty”

or: \(E[\text{GRHI}_1 - \text{GRHI}_2]=0\)

Why?
Because it shall be applicable independent of the input quantities in a region.

This is the most difficult condition!
Different concepts

Geogenic Rn hazard index GRHI can be:

- **continuous** index, e.g. $\in [0,1]$ or $(-\infty, \infty)$ etc.
- **discrete** index or score, e.g. $\in \{I, II, III, IV\}$ or \{low, medium, high\} etc.

Input quantities

continuous

categorical / discrete, ordinal (ordered)

A B C D

categorical / discrete, nominal (unordered)

find this function!

GRHI

continuous

categorical ordinal

I II III IV

this pres.: continuous GRHI proposed
some options

original quantities

proposal Cinelli et al. 2015

some varieties

classify

combine
e.g. weighted mean

rescale

combine

construct new variable which contains most of joint variability

dimensional reduction

see presentation Ciotoli et al.!

extract
e.g. first principal component

GRHI

some varieties

GRHI
Previous attempts

• TREICEP-5, Veszprém 2016:
 - transformed variables
 - options: GRHI constructed such that
 (a) covariates considered as proxies or predictors of GRP; or
 (b) covariates should best predict indoor Rn
 - weights:
 (1) through correlations between variables;
 (2) loadings of 1. principal component
 - performance of GRHI assessed as RPA predictor, DE data

• GARRM-13, Prague 2016:
 - 3 “families” of methods:
 ‘F’: GRHI=mean of distribution functions of covariates;
 ‘R’: GRHI=mean of GRP predicted by covariates through regression;
 ‘P’: 1.PC, as above.
 - performance of RHI assessed as predictor of indoor Rn exceedance probability, DE data;
 no convincing advantage of any method

• TEERAS, Sofia 2017:
 - Case study Cantabria:
 covariates: soil Rn, GDR, fault density, U in soil, lithology, permeability, karstification
 - weights: correlation with indoor Rn; GDR and U excluded
 - 3 “hazard classes”: if prob(C>300), estimated from GRHI, >0.1 → high;
 if prob(C>100)<0.1 → low; otherwise medium.
 - Performance through underestimation rate (2.kind error): 7%
Predictors and proxies or surrogates:

- ADR is **proxy** to GRP: no physical causal, but **statistical** relationship.
- Red arrows: **physical** causality: **predictors** or **controls**; direct or indirect.
- **X**: no identifiable relationship, perhaps because other controlling factors are dominant.
- GRHI candidate covariates are predictors or proxies to the GRP;
 - The stronger the statistical relationship, the better!
Case study: covariates

German data

GRP, n=4728
U (Bq/kg), survey, n=2194
terr. DR (nSv/h), survey, n=10,931
stand. indoor Rn (Bq/m³), n=39,809

Atlas data

U (ppm), GEMAS-FOREGS, n=4970
terr. DR (nSv/h), from EURDEP stations, n=1343
stand. indoor Rn (Bq/m³), n=24,269
Approach

• Understand the GRP as “best” realization of the GRHI at a location.

• For all covariates Y_i (e.g. DR, U, stand. indoor, geology,...): establish all possible functional dependencies $GRP = f(Y_i)$, $GRP = f(Y_i,Y_j)$, ... (“transfer models”) method: estimate Y_i at locations of GRP, in regions where GRP and Y_i are available. Where possible, the f should be regionally determined, otherwise generic.

• At locations x where Y_i, Y_j,... are available (data $y_i(x)$, $y_j(x)$,..): Calculate $GRP^*(x)=f(y_i(x))$, $f(y_i(x), y_j(x))$,...

• Merge datasets of GRP and GRP^*, whichever available, and use for mapping.

• Technicality: Transform GRP to $GRHI \in [0,1]$, by tgh transform. Here: so that $GRHI(GRP=20)=0.2$ and $GRHI(GRP=300)=0.95$
Example 1

\[\ln(\text{GRP}) = \text{poly}(\ln(DR)) \]
\[\ln(\text{GRP}) = \text{poly}(\ln(U), \ln(DR)) \]
- coefficients found by multiple regression and backward selection
- no physical base of the model!

Evidently errors are not random, but have regional trend. Why...?
Violates consistency requirement!

AM[diff] = 0.015

slide 18 of 22
Example 2

- RHI from GRP
- RHI from DR, U, C (DE data)
- RHI from DR, U, C (Atlas data)

"truth" estimates

difference RHI(Atlas, all) - RHI(GRP)

errors

AM[diff]=0.0017

AM[diff]=0.034
why?

Observation:
• AM[diff] should be =0; in reality ≠0, but quite low → no high bias.
• Most unpleasant: spatial trends of the errors!

Possible sources of the errors
1. Data (value and location) uncertainty: would lead to randomly distributed errors.
2. Predictors & proxies do not allow perfect reproduction of the GRP because important control factors are missing. (See “rock to risk”!) I.e., models are incomplete. if these missing factors are regionally differently important ⇒ error has geographical trend.
3. Transfer models (by regression) are uncertain: a) unc. of model structure, b) unc. of estimated parameters; c) residual error. (a+c) partly related to 2.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{lnGRP} & \text{lnDR-DE} & \text{lnU-DE} & \text{lnC-DE} & \text{lnDR-Atlas} & \text{lnU-Atlas} & \text{lnC-Atlas} \\
\hline
0.37 & 0.68 & 0.66 & 0.35 & 0.47 & 0.50 & 0.76 \\
0.46 & 0.47 & 0.66 & 0.36 & 0.50 & 0.54 & 0.76 \\
0.42 & 0.73 & 0.60 & 0.38 & 0.50 & 0.54 & 0.82 \\
0.35 & 0.79 & 0.60 & 0.38 & 0.50 & 0.54 & 0.82 \\
0.36 & 0.34 & 0.76 & 0.55 & 0.76 & 0.55 & 0.46 \\
0.38 & 0.34 & 0.55 & 0.46 & 0.76 & 0.55 & 0.46 \\
\hline
\end{array}
\]

\text{(Spearman-r)}
Conclusions & to-do

• Idea of GRHI is relatively simple
• Different ways of defining it from predictors or proxies
• Main problem: poor correlation between GRP and candidates for covariates
• Dependence structure (and correlation) is regionally variable; how to parametrize this while staying simple?
• Here: GRP predicted from covariates, model determined by regression
• Works moderately well, local errors to be expected!
• GRHI classes (see Cantabria study, TEERAS 2017): how to define class limits; classification errors?
• To do: exercises with regional datasets; include more predictors and proxies!
Thank you!