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Indoor radon - essentials
Indoor radon – most important contribution to dose!

Second most important cause of lung cancer after smoking! 

In Europe estimated about 62,000 lung cancer fatalities per year attributed to Rn. 
(Gaskin et al., Envir. Health Perspectives 125, 5 (2018); incl. RU, TR; missing: BiH, LV, MD, MK, MT, RS, UA)

Sources of indoor Rn:

1. Geogenic Rn (most important in most cases)

2. Building materials
3. Tap water, natural gas

Concentrations of indoor Rn controlled by

Geogenic factors:

Geology, soil type, U concentration in topsoil, permeability, granulometry,…

Anthropogenic factors:

Construction type (tightness of structures in contact with the ground), 

life or usage patterns (ventilation)

Very high local and temporal variability � makes prediction very difficult.

(figure appears a bit overestimated to me)



slide 4 of 18

Legal background
Basic Safety Standards (BSS)

Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers 

arising from exposure to ionizing radiation

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2014:013:TOC (OJ L, 17.01.2014)

Art. 103,3; RPA: 

“Member States shall identify areas where the radon concentration (as an 

annual average) in a significant number of buildings is expected to exceed 

the relevant national reference level.”

Conceptual definition, which has to be translated into an operable definition.

Art. 54, 74, annex XVIII; Radon Action Plan:

In areas according Art.103,3: Buildings with public access and workplaces 

must be measured and if above RL, remediated. New buildings: particular Rn 

prevention. Strategy to reduce Rn in dwellings.

These areas are called Radon Priority Areas (RPA), to indicate priority in taking action. 

Formerly also “Radon Prone Areas”

Reference level (RL): must be ≤ 300 Bq/m³ (BSS Art 54,1 & 74,1). Most countries chose 300, Ireland and others: 200
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RPA definitions, 1
Some examples of operable RPA definitions, based on different Rn measures:

• An area B (grid cell, municipality…), in which the mean population-weighted indoor 
concentration C exceeds the reference level (RL); AMB(C)>RL; measure = AMB

• same, but indoor concentration in dwellings on ground floor

• An area B, in which the probability that C exceeds the RL, is greater than p (typically 10%); 
probB(C>RL)>p; measure = probB

• The areas B which represent the upper 10% of AMB(C); measure = percentile

• An area, in which the collective exposure (e.g., AMB(C)×population) is among the upper 10% 

Important:

There is no “natural” definition of RPA! Therefore, also no “true” RPA!

RPAs always depend on definition and to some extent, on estimation method.

This is partly a political decision, partly a pragmatic one (i.e., availability of data).

Consequence:

RPAs may, in general, not be comparable across borders. This may create communication and 

credibility problems. Discussing this and proposing solutions is another subject of the Metro 

Radon project. One way may be a map of the Rn hazard index (RHI – currently under 

development) as “universal” (but still to an extent deliberate) measure of Rn “priorityness”.
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RPA definitions, 2
Multinomial:

Instead of 2 classes (RPA / non-RPA), several classes of “Rn-priorityness”; 
approach chosen by some countries.

Multivariate:

Although the BSS definition relies on indoor Rn concentration, one may chose 
to base estimation on other Rn-related variables instead or additionally. 
Examples:  geogenic Rn potential, U concentration in the ground, terrestrial 
gamma dose rate, geological unit, tectonic features etc. 

GRP = geogenic Rn 

potential

RHI = geogenic Rn 

hazard index

… and RPAs
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RPA estimation –

a classification problem
Decision about whether a geographical unit shall be labelled RPA or not (in the 
case of multinomial definition, which grade of “Rn priorityness” it should be 
assigned): a classification problem. 

If estimated from secondary quantities: conditional and cross classification.

Existing solutions are pragmatic in the sense that they have to rely on available 
data and on external “political” parameters such as reference levels and 
tolerable uncertainty.

Classification uncertainty

Whereas the uncertainties of the estimated actual levels of the Rn measure are 
commonly quantified by confidence intervals, the ones of classes are given by 
first and second kind classification error probabilities. 

The complication consists in the large spatial variability of indoor Rn, also in 
small scale (∼high nugget). Whether estimated from indoor Rn directly or from 
secondary quantities, this may lead to large classification uncertainty. 

In particular: 
for geographical units whose Rn measure is close to the class limits. 



“Random object”

• A quantity which is an outcome of a statistical estimation 
procedure is a random quantity.

• An area is a spatial object. 

• The label of a grid cell -- 0/1, or a class 1...N --, is a random 
variable as estimation result. 

• ⇒ the object (grid cell, or union of contiguous cells) to which 
the label is attached, is a “random object”.

• Understood as realizations of a stochastic process, all 
realizations of RPA maps look differently.

• Task: define and quantify uncertainty of such object, i.e. 
whether it is present or not (= cell labelled 1 or 0), or to which 
class it belongs with which probability.

• Relevance: Whether an area is labelled RPA or not could 
make huge economical difference!
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Sources of variability & uncertainty

• Intrinsic data uncertainty – Data as observations
- Radiometric data: counting uncertainty;
- “Semantic” data uncertainty: possibly erroneous attribute of measurement, 

e.g. room recorded to be in ground but in reality first floor

• Data as sample of a population
- Sample size

(in particular tricky for true finite populations!)
- Uncertainty about representativeness of sample used for inference.

• Model uncertainty
- “minimal model”: sample statistics, e.g. mean or exceedance probability from

raw data � sampling statistic � uncertainty (SD of the mean, bias of SD). 
Due to the complicated structure of natural controls, Rn is variable on all scales. 

- Data uncertainty inflates dispersion � bias e.g. of exceedance probability
- Structural uncertainty: choice of model
- Estimation uncertainty, e.g. of regression parameters
- ⇒ Prediction uncertainty

... Examples discussed here

Ex. I

Ex. II

Ex. III



Example I: Sample size effect:

A numerical experiment, 1
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The municipality Gigritzpatschen (AT),

Rn concentrations in all N=1004 houses.

Quite realistic!

In a survey, we cannot measure all 

houses, but a number n, selected 

randomly. I.e., a representative sample in 

the best case.

Declare an area (U) RPA, if in U:

probU(z>200)>0.1

Areas U: quadratic fractions of the 

municipality.

AM=122

SD=81

GM=107

GSD=1.65

p>200: 5.48%
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Sample size effect:

A numerical experiment, 2

Finite population! (Statistically → sample without replacement)

Question: For given sampling rate, assuming representative (random) 
sampling, which is the error rate of estimated RPA status?
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method: many virtual 

“sampling campaigns” (2000-

5000 realizations), calculate 

FP and FN rates of estimated 

RPA status

Even for high sampling rate, error chance can be high!

This is the case, 

if a cells contains few houses / if true variability is high / if true p is close to class limit.

in this cell, 

p(true)=0.098≈0.1!



Sample size effect: Theory

In a cell U: population N, true “successes” K (i.e. z>200). 
True success probability: p=K/N.

Sample: 

size n (sampling rate n/N), successes k.

Hypergeometric distribution:

CDF, for estimating whether success rate (k/n) =p’>0.1 (e.g.):
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generalized hypergeometric function

Unpleasant! Little chance for practical use!!

If N,K>>n, i.e. low sampling rate, but n still “large”, and p>>0,<<1:

• conditions often not fulfilled;

• true p not known → replace by p’

→ replace Φ→tn-1 ??



Example II: Overdispersion
Observed Rn concentration: Y, true: Z

pdf of Y: h(y)=∫g(y|z) f(z) dz ... compounded distribution, g=error distribution due 
to measurement uncertainty, f=true natural distribution.

g(y|z) propagates into exceedance probability prob(Y>y0)=1-HY(y0)

Fur unc∼Z, Var Y = Var Z + AM(Z*unc)²
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Example: data as in (I)

prob(Y>200) calculated numerically 

for different relative measurement 

uncertainties, Y∼N(Z,Z*unc).

True prob=5.48% considerably 

inflated!

More realistic error model: 

rel.unc ∼exp(-Z):

unc=30%/10% for Z=10/1000 Bq/m³: 

prob(Y>200)=(8.1±0.6)%, 

i.e. 1.48 times true value....

Conclusion: RPA status probably systematically overestimated (=false positives) due to dispersion 

inflation caused by measurement uncertainty.

Question: How to “de-compound” or invert, to retrieve true exceedance prob.?
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Example III: Estimation uncertainty
Model: Binomial cross-classification, one secondary predictor variable. Idea:

• RPA definition -> threshold for primary variable (Z = indoor Rn conc. exceed. prob.);

• Find threshold of secondary variable (Y = geogenic Rn potential) on which the RPA map 
is then based

• Construct truth table & ROC graph

• Perform statistic in ROC space, according constraints, e.g. tolerated 1. and 2. kind errors 
or optimized classification strength.

Procedure is easy and robust; drawbacks: ignores actual levels of the variables (similar to 
indicator kriging); ignores spatial correlation. Advantage: easy control over classification 
error probabilities.
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Estimation uncertainty – real data!
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Primary variable: Z= indoor Rn concentration in ground 

floor dwellings, houses with basement; 

Secondary variable: Y= Geogenic Rn potential (GRP). 

Modelled by SGS on U = 10 km × 10 km grid, geology 

as deterministic predictor. 

RPA definition: grid cell U = RPA,  if p:=probU(Z>300 

Bq/m³) > 3 × German average ≈ 10%.

p estimated by enhanced empirical exceedance prob., 

assuming LN within cells, GSD=exp(SDU(ln Z))=2:

(unfortunately biased estimator)

Cell U labelled RPA or non-RPA with confidence 90%, 

i.e. 1. and 2. kind error probability <0.1.

RPA: Y>44.5 (12.0% of territory); 

Non-RPA: Y<20.2 (49.8% of territory); 

Yellow: undecided

Suggestion for RPAs, Germany, based 

on cross-classification method.



Estimation uncertainty – quantification

slide 16 of 18

For estimation uncertainty component of model uncertainty: 

Ignore unc. of input variables! 

Only unc. of association Z ∼ Y!

By bootstrap (k=20,000):

reddish hues: RPA: CI90 = (38.2, 52.8)

greenish hues: Non-RPA: CI90 = (13.1, 26.4)
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Distribution somewhat unexpected

Probably because classification is ‘very’ nonlinear transform
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Conclusions & To-do

RPA – a sensitive subject!

Action required in RPA can be costly → political disputes

• RPA definition and estimation: not only academic exercise, but practically 
important. May have severe economic & political impact. Heavy stakeholder 
interest!
Therefore: QA very important!

• Uncertainty of RPA status (in terms of classification error rate, 1st/2nd kind 
error prob) has many sources of different types!

• Unc(RPA) can be high, in particular for spatial units close to class limits.

• To do:
- explore uncertainty budget of RPA!
- analytical approach for sample size effect
- inversion of overdispersion effect
- ....

• Open questions which are a big headache in practice: 
- how to communicate the fact that RPAs are “random objects”?
- how to deal with RPA uncertainty in administrative decision-making?
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Thank you!
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