1. Introduction

222Rn in soil-gas studies are important for geology, seismology, radiation protection and NORM activities. The objective of this work is to present the realization and the results of pilot field tests of a detector, designed for continuous, unperturbed monitoring of 222Rn in soil-gas. Hereafter the detector is called Polyphemus.

2. Methods and materials

By design, the Polyphemus detector consists of an optical chamber, which is optically coupled to a hermetic volume which contains a photomultiplier tube (PMT, Hamamatsu R7600U-200), high voltage supply (Hamamatsu C9001 mod +HV), nanoPSD digital spectrometer with an embedded pulse-shape analyzer (produced by the labZy company) and an outside board with chip-controlled sensors for pressure, temperature, humidity and an accelerometer (Figure 1). The optical chamber is a truncated regular pyramid with its base opposite to the PMT. It is produced by 3D printing from PLA and painted with TiO₂. It has holes on its sides to allow free 222Rn diffusion in it. An EJ-212 plastic scintillator foil with thickness 250 μm is glued with optical grease in front the PMT. A certain part of the α- and β- particles produced by 222Rn and its progeny in the optical chamber can reach the plastic scintillator and produce light in it. The light is collected at the PMT, whose anode chain is directly connected to the input of the nanoPSD analyzer. The EJ-212 PSD performance is far from perfect, but still good enough to allow practical application (Figure 2).

3. 222Rn in soil-gas measurements

In the field tests the Polyphemus was placed in a 1 m deep hole in sandy soil in the yard of the Faculty of Physics at Sofia University (Figure 3). The detector makes consecutive, 1h long measurements and the counting rate in the ROI of the peaks of 222Rn and its progeny is recorded (Figure 4). The Polyphemus sensitivity allows to reach a 10% relative uncertainty of the counting rate for a 1 h measurement. The daily soil-gas 222Rn oscillations are clearly seen in Figure 4, but a longer measurement period is needed to study the effects of rainfall and weather parameters on the 222Rn in soil-gas concentration.

4. Conclusions

This work demonstrates the salient features of a newly developed detector for 222Rn in soil-gas measurements, which does not use any kind of air sampling and allows unperturbed 222Rn in soil-gas monitoring. Due to its advantageous design and PSD discrimination capabilities, the detector has low background, good sensitivity and allows continuous monitoring of 222Rn in soil-gas concentrations. It can be useful for experimental studies of the potential relationship between 222Rn in soil-gas anomalies and seismic activity.

Acknowledgment This work is supported by the European Metrology Programme for Innovation and Research (EMPIR), JRP-Contract 16ENV10 MetroRADON.