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Motivation, concept, objective 1

• A quantity which quantifies the contribution of 
geogenic factors to the potential risk that exposure 
to indoor Rn causes.

• A quantity which measures the availability of 
geogenic Rn at surface level.

• Measure of “Rn proneness” or “Rn priorityness” of 
an area due to geogenic factors.

It is known that many geogenic factors contribute. Much 
literature available!
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Motivation, concept, objective 2

• One quantity whose regional variability represents as 
much as possible the variability of the geogenic controls of 
Rn hazard. In other words, these factors shall be squeezed 
appropriately into one quantity “GRHI”;

• A measure of geogenic Rn hazard which is defined 
homogeneously across Europe. This means, determine a 
value of GRHI everywhere in Europe, irrespective of 
regionally available geogenic databases, but still 
comparable between any locations. Such GRHI would be 
the base of a European map of geogenic Rn and a 
European wide determination of Rn priority areas.
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Role of MetroRadon

• Development of the GRHI is one of 
the objectives of MetroRn! (WP 4.3.4) 
Text being generated in parallel to this presentation.

• Harmonization of geogenic Rn quantification 
across Europe ( WP 3.2)

• Possibly harmonized Rn priority areas (delicate 
subject!) (WP 4.4)
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From rock to risk

Improved version! --- We wanted to make it a bit clearer.

(Draft for the Atlas – still under graphics processing.)
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Predictors and proxies

Geogenic quantities of interest:

• Rn concentration in soil gas
• gas permeability
• U concentration, 
• ambient dose rate ADR, 
• geological units / lithology, 
• fault density,
• groundwater recharge coefficient, 
• soil properties (texture, humidity,…),
• karstification,
• standardized indoor Rn concentration,
• various geochemical concentrations,
• climate

Geogenic Radon Potential GRP 
(e.g. Neznal definition); 
but: available only regionally - CZ, 
DE, BE, (IT), (ES), (AT), ?
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Initial idea (Cinelli et al. 2015)
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Desired properties of the GRHI

I. Flexible while consistent: see next slide
- flexible, i.e. to be applied to as many different

situations as possible;
- consistent: across borders between regions 

in which different databases are used for
estimation; this implies independence of
actual database used

II. should reflect as much information as possible

III. should be simple to calculate!

IV. optimal predictor of the geogenic contribution 
to indoor Rn 
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(I) consistency

Its value at a location must be independent on which 
quantities it has been estimated from.
I.e., GRHI calculated from U concentration in soil should have 
approximately the same value as if calculated from dose rate 
or GRP, etc.

A B

GRHI(A)
GRHI(B)

should be about equal!

small distance

calculated from 

input quantities 

Z(A), available in A

calculated from 

input quantities 

Z(B), available in B

This follows from the requirement 
to be consistent cross borders, or 
regions in which different input 
quantities are available.

Reason for the lack of consistency between 
GRHI calculated from different databases.
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(II) maximal information  
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Approaches, 1

A. “global” 

• databases of relevant predictors Xi are available for  the 
entire domain (Europe). From these, a model GRHI = f(Xi) 
is derived. Option: use regional subsets for  calibration / 
training and validation.

• A1: Machine Learning (ML): Find optimal combination of 
Xi that best explains IRC.  presentation Eric.

• A2: Dimensional reduction: Point- or cell-wise 
construction of GRHI by “condensing” the multivariate X;
Either by selection of relevant covariates of by combining 
them (e.g. as PC) such that they best explain IRC, as in 
A1. (= Desired property IV !)



slide 13 of 24

Approaches, 2

B. “regional”

• Use regional databases, which ever available in a 
region. Apply transfer model tailored such that the 
results match across region borders.

• Methods: Regression, regional dimensional 
reduction, regional ML.

• Big challenge: consistency (property I.)

This presentation: only A (“global”) discussed!
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all approaches

• Models tailored such that they best explain IRC (or 
derived quantity, such as prob(IRC>RL) etc. = Property IV.

• IRC (or derived) = f(X) + residual (“error”); 

• Define GRHI := f(X).  (Possibly rescale to [0,1] etc.)

• The residuals have essentially 3 sources:
- data uncertainty;
- inadequacy of the model (inadequate functional 

dependence, insufficient predictors)
- non-geogenic factors! which of course contribute 

to IRC importantly!
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Desired properties fulfilled?

(I) 

consistent

(I) 

flexible

(II) 

as much inf. 

as possible

(III) 

easy

(IV) 

optimal 

pred. of C

A1

by definition
no, because 

global model

No, because 

regional data 

not included;

Yes, insofar as 

structural 

properties of 

a large area 

accounted for

Not really; 

depending 

on how 

done in 

detail

to be 

checked by 

trying!

A2

B problematic yes potentially yes more or less
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pros - cons

pro con

A • consistent by default  no 

harmonization problem

• Structural properties of a large 

region accounted for (can learn 

on a wide variety of situations)

 regionally resolution lower than with 

regional model;

 does not exploit all regionally 

available data;

 not flexible: models has to be 

calculated from entire dataset;

 technically quite complicated

B  regionally higher resolution;

 makes use of more data;

 relatively easy

 consistency & harmonization 

between regions difficult;

 regionally valid transfer models must 

be found.
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Option: classification

If predictor Z in class j  then GRHI in class k
Not easy for multivariate, multinomial

• One predictor, GRHI classed 
 logistic regression, ROC;

• Several numerical predictors, GRHI classed 
 discriminant analysis.

• Machine learning:
Multivariate classification e.g. by random forest 
technique, support vector machine etc. 
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Previous attempts
• “Long Way” 2011, sec. 5.4.3, H. Friedmann:

- Definition of RH from soil Rn and perm; transfer models to estimate soil Rn from U or ADR
- Classify RH into 3 classes.

• Kraków 2015: Cinelli et al. -- see slide 9!

• TREICEP-5, Veszprém 2016: Bossew et al.
- transformed variables
- options: GRHI constructed such that 

(a) covariates considered as proxies or predictors of GRP; or 
(b) covariates should best predict indoor Rn

- weights: 
(1) through correlations between variables; 
(2) loadings of 1. principal component

- performance of GRHI assessed as RPA predictor, DE data

• GARRM-13, Prague 2016: Bossew et al. 
- 3 “families” of methods: 

‘F’: GRHI=mean of distribution functions of covariates; 
‘R’: GRHI=mean of GRP predicted by covariates through regression; 
‘P’: 1.PC, as above.

- performance of RHI assessed as predictor of indoor Rn exceedance probability, DE data;
no convincing advantage of any method

• TEERAS, Sofia 2017: Cinelli et al. 
- Case study Cantabria: 

covariates: soil Rn, GDR, fault density, U in soil, lithology, permeability, karstification
- weights: correlation with indoor Rn; GDR and U excluded
- 3 “hazard classes”: if prob(C>300), estimated from GRHI, >0.1  high; if prob(C>100)<0.1  low; otherwise medium.
- Performance through underestimation rate (2.kind error): 7%

• IWEANR, Verbania 2017: Ciotoli et al.; Bossew et al.  
- Case study DE: GRHI constructed from European (Atlas) and DE data. Comparison with GRHI derived 

from GRP shows error with regional trend  not desirable
- RHI map constructed of PCA(U, Th, K, fault density, heat flow, seismic density, soil fine fraction)
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Example A1 (ML) / 1

Method: MARS regression

• Target variable Y: arithmetic 
mean of ln (Indoor Rn conc.) 

• Only cells with n>30 were used

• 17,018 cells with data 
remaining

target = AMLData source Informative Not informative

Geology (IGME 1:5M) Petrography Distance and type of fault

Hydrogeology (IHME 1:1.5M) Hydrogeological classes Karstification

Soil type Soil types -

LUCAS topsoil survey Silt, Available water capacity, Clay, 
coarse fraction, Bulk Density

Sand, Texture class, 

Coordinates X, Y -

Soil hydraulic properties Hydraulic conductivity -

Input data/predictors

!!
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Example A1 / 2

target = AML

• target = AML

• linear rescaling to values between 
0 (min) and 1 (max)

 different color ramp to emphasize 
regional differences

Tentative GRHI maps by ML

• grid: 10 km  10 km

• Cells in prediction grid represent 
• dominant categorical variable 

(covering the most of the cells 
area; mode)

• Arithmetic mean of numerical 
variables 
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Example A2 (simple regression) / 1
• Multivariate input data X:

- starting with 100 covariates:
-- Geochemistry: FOREGS + GEMAS, 59 elements ; 

missing U estimated by La and Ce; 4982 data points
-- soil properties: from LUCAS, projected to geochem. data points
-- FF:=(clay+silt+.05*sand)/(100+CF) (Whether this is a reasonable def. as perm proxy -- ?)
-- geology: IGME 5000

- Used for further analysis: 
pH, TOC, FF, CF, bulk dens, AWC, ln(U), K2O, Al2O3, SiO2, Fe2O3, CaO, geo1 

- geo1:={Carbonate, Meta-sediments, Siliciclastics, Tert/Quart sediments, Igneous basic, Ign 
intermediate, Ign acid pre-Variscan, Ign acid Var., Ign acid post-Var.} … strongly simplified 
from IGME 5000. (Perhaps too much simplified!)

• Target variable Y=AML (Atlas cells); interpolated from Atlas to geochem. locations, i.e. 
hypothetical AML of 10x10 km² squares on geochem. data locations.

• Dim. reduction: 
finding combination of X by PCA which best predicts Y was not successful;

• By trying GLM  geo1, FF, pH, dens., K2O, ln(U): best predictor of AML; r²=26% only
Including “annual mean temperature” as proxy of anthrop. factors would lead to 29%. 

• f(X)  OK (Atlas cells, i.e. 10 km resolution)  rescale [0,1] …. this defines the GRHI.
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Example A2 / 2
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Conclusions
• Global approaches (A1 and A2) seem promising in spite of disadvantages.

• ML approach (A1) leads to very high r²; 
simple GLM approach (A2) easy to perform, but lower r². 
Currently ML seems better choice.

• Still badly missing: 
Gas permeability data, European scale:
We have data on texture and other soil properties, but one essential parameter 
missing: mean soil humidity. 

• Unclear: improvement by using CoDa for geochem. data? Theoretically sounder, 
but more complicated.

• Variable construction by PCA: theoretically more satisfactory, but not successful 
here.

To-do
• Try different ML methods;
• For methods based on dim. red.: further explore methodology, selection of input 

variables
• Establish criteria for model performance: r² etc, but also compliance to desired 

properties  
• Explore classification approaches  GRPA maps!
• Compare with regional approach (B)
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Thank you!
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