

Study of the Partition Coefficient and the Diffusion Length of Radon in Polymers at Different Temperatures: Experimental Approach and Results

S. Georgiev, K. Mitev, Ch. Dutsov, T. Boshkova, I. Dimitrova SUBG

Polymer membranes

- Radon/Thoron discrimination in lots of passive detectors
- Radon mitigation by water-proofing membranes

Both count on "diffusion delay" $L_D = \sqrt{\frac{D}{\lambda}} \implies L_D \sim \sqrt{T_{1/2}}$... and D, resp. L_D are temperature dependent

Polymer samplers

 Methods for radon measurements are developed, based on the high radon absorption ability in polymers such as Makrofol DE and N

• The absorption could be described by the partition coefficient K and the diffusion length L_D and they both depend on the temperature

Model of RNG transport in polymers

 At the border polymer/ambient media the RNG concentration ratio is:

$$K = \frac{C_{in}}{C_{out}}$$

 Once in the polymer, the radioactive noble gas (RNG) diffuses and decays:

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \lambda c$$

Nuclear Instruments and Methods in Physics Research A 598 (2009) 620-627

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nima

Sorption and desorption of radioactive noble gases in polycarbonates

Model of RNG transport in polymers

And the absorbed activity in thin plate is:

$$A(t_s, t_d) = \frac{8\lambda L_D^2 V K C_A}{L^2} \sum_{k=0}^{\infty} \frac{e^{-\lambda t_s} - e^{-\lambda_k t_s}}{\lambda_k - \lambda} e^{-\lambda_k t_d},$$

$$\lambda_k = \lambda \left(1 + \left(\frac{(2k+1)\pi L_D}{L} \right)^2 \right),\,$$

 λ – RNG decay const. L, V – plate thickness and volume C_{Δ} – ambient RNG concentration at t_{c} =0

 t_s , t_d – sorption and desorption time

Method for estimation of K and L_D

The absorbed-activity equation could be rewritten:

$$A(t_d; K, L_D) = 8VC_A K \sum_{n=1}^{\infty} \frac{e^{-\lambda t_s} - e^{-\lambda \left(1 + (n\pi)^2 \left(\frac{L_D}{L}\right)^2\right) t_s}}{(n\pi)^2} e^{-\lambda \left(1 + (n\pi)^2 \left(\frac{L_D}{L}\right)^2\right) t_d}$$

n = (2k + 1) – an odd number

Radiation Protection Dosimetry (2011), Vol. 145, No. 2–3, pp. 123–126 Advance Access publication 5 April 2011 doi:10.1093/rpd/ncr069

DETERMINATION OF THE DIFFUSION COEFFICIENT AND SOLUBILITY OF RADON IN PLASTICS

D. Pressyanov*, S. Georgiev, I. Dimitrova, K. Mitev and T. Boshkova Faculty of Physics, University of Sofia 'St. Kliment Ohridski', 5 James Bourchier Blvd, 1164 Sofia, Bulgaria

Desorption follow-up: challenges

- Temperature have to be constant
 - During both sorption and desorption
 - Including the activity measurement
- Desorption could be fast depending on L_D/L it could take a few minutes
 - Fast and precise timing
- Secular equilibrium between Radon/SLP is needed
 - Radon is measured by its short-lived progeny (SLP)
 - So the fast desorption must be "stopped" for the measurement duration (or somehow accounted...)

Desorption follow-up: challenges

- LSC with toluene cocktail is the best decision for Makrofol N – its fully dissolved in toluene
- ...but doesn't work for the other polymers
 - Makrofol DE is only partially dissolved in toluene
 - PP, HDPE, LDPE not dissolved at all in toluene and other organic solvents: Gasoline, Bensol(Benzene), 1,2-Dichloroethane (ethylene dichloride)
 - Activity desorbs in the cocktail and the cocktail (or at least toluene) is absorbed in the polymers
 - => Complicate change in the Counting efficiency

Desorption follow-up: challenges

- Cherenkov counting in water:
 - + Allows precise timing
 - + Almost fully stops the activity loss during the measurement and allows a posteriori correction
 - + No temperature control during the measurement
 - + One point of the desorption could be measured more than once
 - Radon desorbs in the water until equilibrium of radon concentration in the two media is reached
 - ⇒ Change of the efficiency during that process
 - Each point of desorption is a different foil

Counting efficiencies ε_c

- Two experiments for ε_c estimation:
 - Unexposed foils in high-activity water for better counting statistics
 - Exposed Makrofol N in distilled water to compare with the previous experiment

Counting efficiencies ε_c

- Samples are followed at the RackBeta LScounter and measured several times at HPGe
 - No time dependence of ε_c for PP, LDPE, HDPE
 - After 60-70h ε_c =const for Makrofols

No	Sample	Counting efficiency
1	PP in water	0.380(12)
2	LDPE in water	0.371(12)
3	LDPE-A in water	0.400(14)
4	HDPE in water	0.407(13)
5	Makrofol N in water	1.168(36)
6	Makrofol DE in water	0.883(29)
7	pure water	0.376(12)
8	Makrofol N in LSC	4.946(29)

Six foils 5.6cm x 1.6cm of each material:
PP, LDPE, LDPE-A, HDPE, Makrofol DE, Makrofol N

- Three experiments with very high activity in small volume at 5°C, 21°C and 31°C
 - − High C_A to ensure better counting statistics
 - and longer desorption follow-up

Rn is promptly introduced in the system in the beginning and the system is disconnected

The activity from the control drexel is diluted and measured, in order to estimate the exposure C_{Λ}

 During the exposure, the exposure drexel was placed in the 50L box, and the 50L box was placed in thermostate

for temperature control

- The activity concentration in the 50L box was measured in order to check for activity leakage
 - The leakage was fond to be less than1% in all experiments
- After the exposure the foils were kept in the thermostate, in order to desorb at the same temperature

- One experiment in the 50L referent volume of the AlphaGuard at 10°C
 - Due to much lower C_A , only Makrofol foils were used
 - The foils were stuck in the holder and placed directly in the 50L volume
 - $-C_A$ was measure directly
 - 6 Makrofol DE and 12 Makrofol N foils were used
 - 6 Makrofol N were measured in toluene and the other 6 – in water

A(MakN), Bq Rank 5 Eqn 8017 7exp-42.1(a,b) r²=0.99872351 DF Adj r²=0.99808527 FitStdErr=0.42260996 Fstat=3911.9941 a=103.26261 b=36.216443 150

K, L_D experiments: Results

	=								
	PP	LDPE	LDPE-A	HDPE	Mak DE	Mak N	MakDE*		
T°C	Partition coefficient K								
5(1)	6.13(55)	4.18(39)	4.05(42)	3.63(33)	77.5(67)	211(16)	21.5(43)	5	
10(1)					72.8(58)	183(12)	24.3	10	
21(1)	3.69(38)	3.66(38)	3.13(41)	2.51(22)	34.6(30)	103.3(79)	26.4(25)	19.5	
31(1)	3.25(43)	3.70(43)	2.96(30)	2.44(21)	27.8(24)	70.2(51)	22.9	31	
~20		2.17(14)		2.21(13)	27.6(16)	112(12)			
20		2.40(22)							
ToC	Duffusion length L _D , um								
5(1)	67.6(51)	605(30)	646(36)	460(19)	20.8(10)	18.0(10)	42.2(16)	5	
10(1)					26.8(10)	23.9(10)	42.8	10	
21(1)	198(10)	1210(64)	1204(85)	880(22)	43.3(13)	36.2(10)	51.7(8)	19.5	
31(1)	300(15)	1880(140)	1722(54)	1252(23)	62.9(16)	52.1(15)	75.5	31	
~20		1463(33)		721(9)	50.8(10)	38.9(13)			
20		1437(94)							
ToC	Diffusion coefficient D, 10 ⁻¹⁴ m ² /s								
5(1)	0.96(14)	76.9(77)	87.4(97)	44.3(37)	0.0911(84)	0.0677(79)			
10(1)					0.151(11)	0.120(10)			
21(1)	8.20(85)	307(33)	304(43)	162(8)	0.394(25)	0.275(15)			
31(1)	18.9(19)	739(111)	623(39)	329(12)	0.831(43)	0.570(32)			
~20		448(10)		109(2)	0.540(12)	0.318(11)			
20		432(28)							
ToC			Perme	eability P, 10 ⁻¹	¹³ m ² /s				
5(1)	0.59(10)	32.1(44)	35.4(54)	16.1(20)	0.706(89)	1.43(20)			
10(1)					1.10(12)	2.20(24)			
21(1)	3.03(44)	113(17)	95.1(18)	40.7(41)	1.36(15)	2.84(27)			
31(1)	6.1(10)	273(52)	184(22)	80.4(75)	2.31(23)	4.00(37)			
~20		97.2(66)		24.0(15)	1.49(9)	3.56(40)			
20		104(9)							
	Pressyanov et al, Rad. Prot. Dosim. 145(2-3) (2011) 123-126								
	Mitev et al, Appl. Rad. Isot.109 (2016) 270–275								
	Pressyanov, HealthPhys 2009								

Thank you!