

The equipment for testing of measuring devices at the low-level radon activity concentration

E. FIALOVA¹, J. VOSAHLIK¹, I. BURIAN¹, M. MAZANOVA² AND P. PS OTAHAL¹

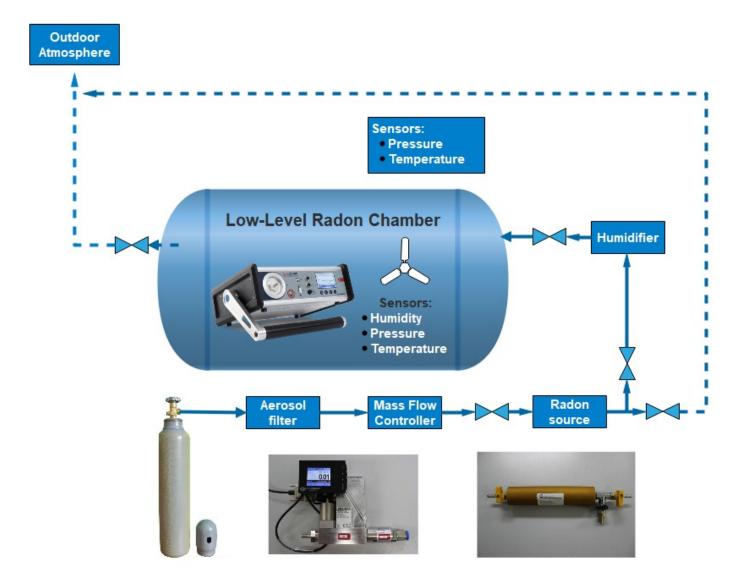
¹National Institute for Nuclear, Biological and Chemical protection (SUJCHBO, v.v.i.)

²Czech Metrological Institute (CMI)

fialovaeliska@sujchbo.cz

Introduction

- □ Radon measurement techniques are simple, efficient and precise
- □ Levels of relevant activity concentration in European dwellings are laid down (300 Bq.m⁻³)
- Developing and improving of calibration procedures is still actual
- The main goal maintaining of time stable radon activity concentration on the precise level for several days
- □ MetroRADON project (European metrology program for innovation and research) + SUJCHBO + CMI


New equipment for testing of measuring devices at the low-level radon activity concentration

Equipment construction

Achieving of low-level radon activity concentration:

- Constant dotting of radon
- Defined ventilation
- □ Radon free air (specific atmospheric condition in the SUJCHBO areal)

The reference level of radon

□ Model of constant radon input and constant ventilation:

$$a(t) = a_o \cdot e^{-(\lambda+k)\cdot t} + \frac{R}{V(k+\lambda)} \left(1 - e^{-(\lambda+k)\cdot t}\right)$$

□ For the steady-state (t = ∞) at a constant air exchange intensity and constant radon input rate:

$$a_{V,Rn} = R_{Rn} / (Q_{settled} \cdot \frac{M.p_{at Q calibration}}{R.T_{at Q calibration}} / \frac{M.p_{at confrontation}}{R.T_{at confrontation}} + \lambda.V)$$

- a(t) radon activity concentration in time t (Bq·m⁻³)
- a_0 radon activity concentration in time zero (Bq·m⁻³)
- λ radon decay constant (h⁻¹)
- k air exchange intensity (h⁻¹)
- t time (h)
- R radon input rate ($Bq \cdot h^{-1}$)
- V volume of radon chamber (m³)

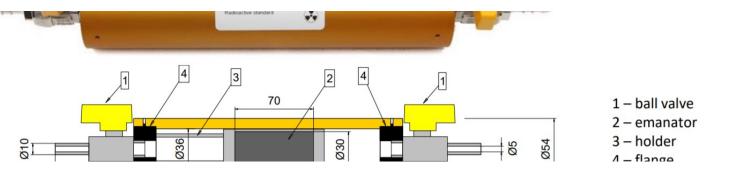
a _{v,Rn}	radon activity concentration ($Bq \cdot m^{-3}$)
Q _{settled}	flow rate (m³·h-¹)
М	molar mass (kg·mol⁻¹)
p at Q calibration	air pressure 1013,25 (hPa)
R	molar gas constant (J·mol ⁻¹ ·K ⁻¹)
T at Q calibration	temperature 273,16 (K)
p _{at Rn confrontation}	air pressure (Pa)
T _{at Rn confrontation}	temperature (K)
λ	radon decay constant (h-1)
V	volume of radon chamber (m³)
R _{Rn}	radon emanation power (Bq \cdot h ⁻¹)

□ Expanded uncertainty as the product of the standard measurement uncertainty and the expansion coefficient k = 2 (which corresponds to a coverage probability of about 95 % for normal distribution) following the EA 04/02 was calculated for **2**%.

9th International Conference on Protection against Radon at Home and at Work, September 16 – 19, 2019

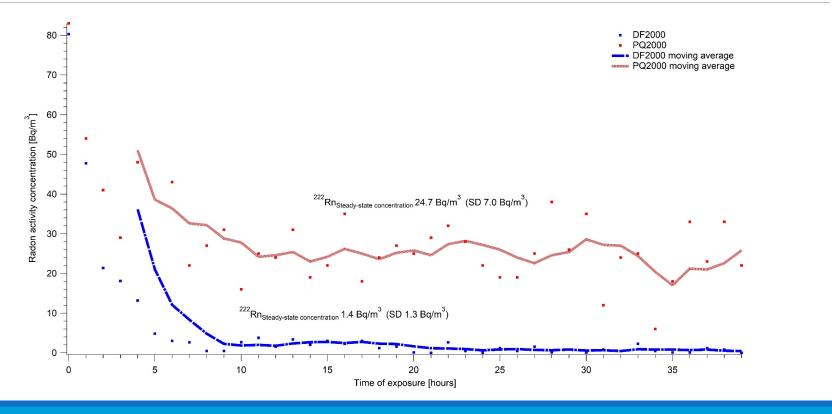
Low-level Radon Chamber (LLRCH)

- 324 litres
- □ Special colour
- □ 4 sampling points
- □ Movable drawer
- Measuring of climatic conditions
- Continually regulated ventilator



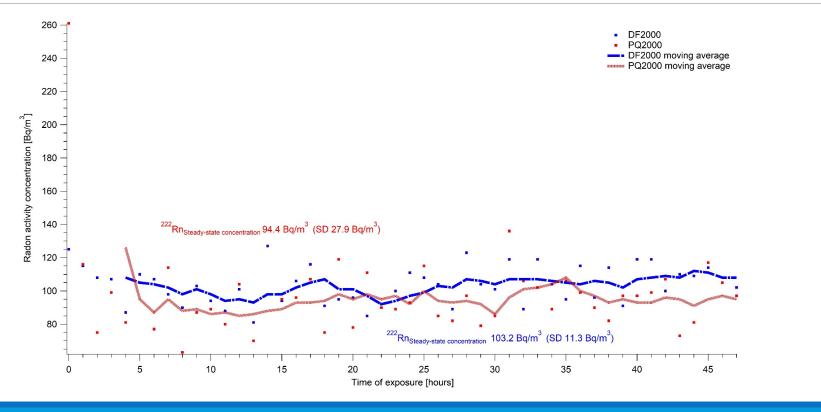
Low-level radon source

- □ Stainless steel cylindrical case, ball valves
- □ Steel tray with Ra-226 placed in the middle of this cylindrical case radon releases from this thin layer
- □ Flow-through mode
- The emanation coefficient was determined by measuring the activity of the RnDP (Pb-214/Bi-214) - the activity of Ra-226 is almost equal to 1

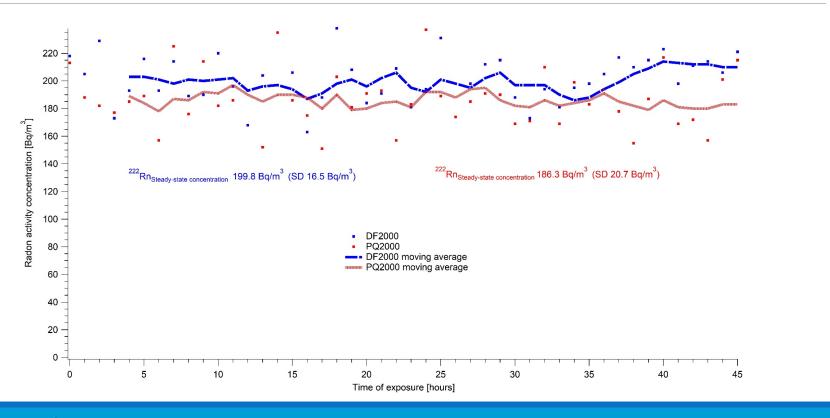

Experiments in LLRCH

Calibrated AlphaGuard DF 2000 (background 2.2 ± 1.2 Bq/m³)
Calibrated AlphaGuard PQ 2000 (background 29.0 ± 7.0 Bq/m³)

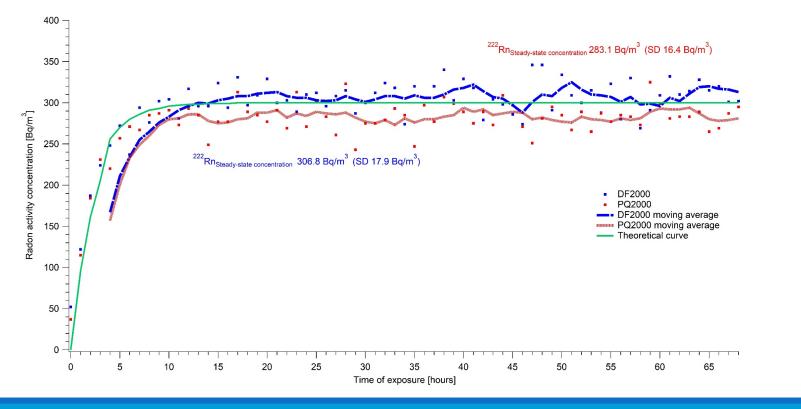
Background test
Experiments under 100, 200 and 300 Bq/m³


Background test

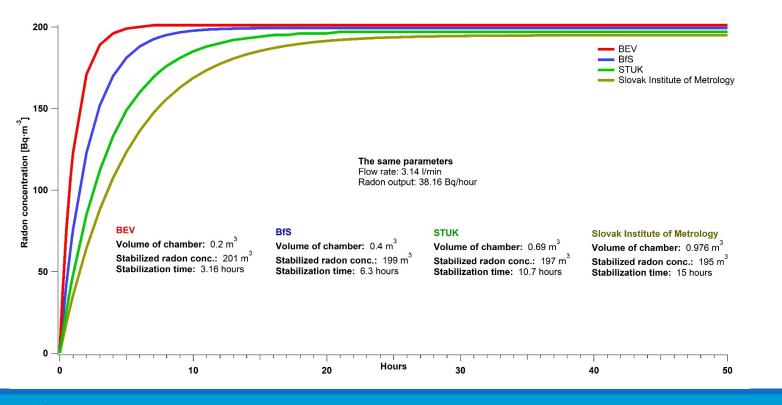
9th International Conference on Protection against Radon at Home and at Work, September 16 – 19, 2019


100 Bq/m³

9th International Conference on Protection against Radon at Home and at Work, September 16 – 19, 2019


200 Bq/m³

9th International Conference on Protection against Radon at Home and at Work, September 16 – 19, 2019


300 Bq/m³

9th International Conference on Protection against Radon at Home and at Work, September 16 – 19, 2019

Model example

Conclusion

- □ LLRCH was developed for the calibration of measuring devices under a low-level radon activity concentration in the range from 100 Bq/m³ to 300 Bq/m³.
- □ Many tests validated the tightness of the chamber and the possibility of adjusting a stable radon activity concentration on the required level for several days (depends on available amount of radon free air in the pressure vessel).
- Expanded uncertainty is 2 %.
- □ The climatic parameters are continuously monitored by the sensors placed inside the chambre.
- □ The level of radon activity concentration is possible to be changed continuously during the experiment.
- □ The low-level radon source by the CMI is possible to be used for different radon chambers of volume from 200 to 1000 liters.

Thank you for your attention!

JRP EMPIR 16ENV10: MetroRADON Metrology for radon monitoring